Biofuels, Solar and Wind as Renewable Energy Systems - Benefits and Risks

Biofuels, Solar and Wind as Renewable Energy Systems - Benefits and Risks

von: D. Pimentel

Springer-Verlag, 2008

ISBN: 9781402086540

Sprache: Englisch

513 Seiten, Download: 12079 KB

 
Format:  PDF, auch als Online-Lesen

geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop


 

eBook anfordern

Mehr zum Inhalt

Biofuels, Solar and Wind as Renewable Energy Systems - Benefits and Risks



  Preface 5  
  Acknowledgements 7  
  Contents 8  
  About our Authors 10  
  Contributors 17  
  Renewable and Solar Energy Technologies: Energy and Environmental Issues 20  
     1.1 Introduction 20  
     1.2 Hydroelectric Power 21  
     1.3 Biomass Energy 23  
     1.4 Wind Power 24  
     1.5 Solar Thermal Conversion Systems 25  
     1.6 Photovoltaic Systems 26  
     1.7 Geothermal Systems 27  
     1.8 Biogas 28  
     1.9 Ethanol and Energy Inputs 28  
     1.10 Grasslands and Celulosic Ethanol 30  
     1.11 Methanol and Vegetable Oils 30  
     1.12 Transition to Renewable Energy 31  
     1.13 Conclusion 32  
     References 33  
  Can the Earth Deliver the Biomass-for-Fuel we Demand? 37  
     2.1 Introduction 37  
     2.2 Background 40  
     2.3 Plan of Attack 45  
     2.4 Efficiency of Cellulosic Ethanol Refineries 46  
     2.5 Where will the Agrofuel Biomass Come from? 51  
     2.6 Conclusions 62  
     References 62  
     Appendix 1: Ecosystem Definition and Properties 64  
     Appendix 2: Mass Balance of Carbon in an Ecosystem 66  
     Appendix 3: Environmental Controls on Net 70  
     Primary Productivity 70  
     Glossary 72  
  A Review of the Economic Rewards and Risks of Ethanol Production 74  
     3.1 Introduction 74  
     3.2 Measuring and Mismeasuring Biofuels Economic Impacts 76  
     3.3 Ethanol Production Economic Opportunities and Offsets 81  
     3.4 Bioenergy Promotion and the Overall Sustainability 89  
     of Rural Economies 89  
     References 94  
  Subsidies to Ethanol in the United States 96  
     Acronyms & abbreviations 97  
     4.1 Introduction 97  
     4.2 Evolution of Federal Policies Supporting Liquid Biofuels 99  
     4.3 Current Policies Supporting Ethanol 101  
     4.4 Aggregate Support to Ethanol 113  
     4.5 Pending Legislation 119  
     4.6 Conclusions 120  
     References 122  
  Peak Oil, EROI, Investments and the Economy in an Uncertain Future 126  
     5.1 Introduction 127  
     5.2 The Age of Petroleum 127  
     5.3 How much Oil will we be able to Extract? 129  
     5.4 Decreasing Energy Return on Investment 134  
     5.5 The Balloon Graph 136  
     5.6 Economic Impacts of Peak Oil and Decreasing EROI 138  
     5.7 The “Cheese Slicer” Model 139  
     5.8 Results of Simulation 144  
     5.9 Discussion 144  
     5.10 Conclusion 147  
     References 147  
  Wind Power: Benefits and Limitations 150  
     6.1 Introduction 150  
     6.2 The Power Density of Electricity from Wind Turbines 152  
     6.3 Producing the Output of a Power Station from Wind Power 153  
     6.4 The Problem of Assessing Energy with Respect to Wind Turbines 154  
     6.5 The Implications of the Uncontrollable Nature of the Output from Wind Turbines 155  
     6.6 The Problems of Operating in Harness with Wind Turbines 156  
     6.7 Alternatives toWind Power 157  
     6.8 The Problems of Storage 158  
     6.9 The Problem of ‘Liquid’ Fuel in a Fossil-Fuel-Free Society 163  
     6.10 Learning from Experience (Denmark) 164  
     6.11 Making Realistic Assessments of the Cost ofWind Power 165  
     6.12 Conclusion 165  
     Notes 166  
     References 168  
  Renewable Diesel 169  
     7.1 Introduction 169  
     7.2 The Diesel Engine 170  
     7.3 Ecological Limits 170  
     7.4 Straight Vegetable Oil 172  
     7.5 Biodiesel 172  
     7.6 Green Diesel 175  
     7.7 Feed Stocks 177  
     7.8 Conclusions 183  
     7.9 Conversion Factors and Calculations 183  
     References 185  
  Complex Systems Thinking and Renewable Energy Systems 188  
     8.1 Theoretical Issues: The Problems Faced by Energy Analysis 189  
     8.2 Basic Concepts of Bioeconomics 198  
     8.3 Using the MuSIASEM Approach to Check the Viability of Alternative Energy Sources: An Application to Biofuels 209  
     8.4 Conclusion 220  
     References 224  
  Sugarcane and Ethanol Production and Carbon Dioxide Balances 229  
     9.1 Introduction 229  
     9.2 The “Green” Promise 230  
     9.3 CO2 Emissions of Sugarcane Ethanol 230  
     9.4 Gasoline Versus Ethanol 233  
     9.5 Bagasse as a Source of Energy 233  
     9.6 Pre-Harvest Burning of Sugarcane and Mechanical Harvest 235  
     9.7 Distillery Wastes 236  
     9.8 Possible Additional Sources of Methane 237  
     9.9 CO2 Mitigation 237  
     9.10 Variations of CO2 Emissions Calculations 238  
     9.11 A Trend in the Near Future 239  
     9.12 Environmental Impacts Versus CO2 Emissions 240  
     9.13 Conclusions 241  
     References 242  
  Biomass Fuel Cycle Boundaries and Parameters: Current Practice and Proposed Methodology 245  
     Acronyms & abbreviations 245  
     10.1 Introduction 246  
     10.2 BFC Analysis Methodology: A Modular Model Approach 246  
     10.3 BFC Fuel and Net Energy Balance Definitions 254  
     10.4 BFC Models 256  
     10.5 Other Considerations 269  
     References 270  
  Our Food and Fuel Future 272  
     11.1 Introduction 273  
     11.2 Price and Availability of Traditional Fuels 273  
     11.3 Alternative Sources of Energy 280  
     11.4 GreenhouseWarming and its Connections 294  
     11.5 Political and Social Conditions, Especially 298  
     in the United States 298  
     11.6 Conclusions 302  
     References 305  
  A Framework for Energy Alternatives: Net Energy, Liebig’s Law and Multi-criteria Analysis 308  
     12.1 Introduction 308  
     12.2 Net Energy Analysis 309  
     12.3 An Introduction to EROI – Energy Return on Investment 309  
     12.4 Humans and Energy Gain 310  
     12.5 Current Energy Gain 311  
     12.6 An Energy Theory of Value 312  
     12.7 Why is Net Energy Important? 312  
     12.8 Net Energy and Energy Quality 313  
     12.9 Energy Return on Investment – Towards a Consistent Framework 315  
     12.10 A Framework for Analyzing EROI 318  
     12.11 Non-Energy Inputs 319  
     12.12 Non-Energy Outputs 321  
     12.13 Non-Market Impacts 321  
     12.14 A Summary of Methodologies 322  
     12.15 A Unifying EROI Framework 323  
     12.16 Liebig’s Law, Multi-Criteria Analysis, and Energy from Biofuels 325  
     12.17 Conclusion 328  
     References 329  
  Bio-Ethanol Production in Brazil 333  
     13.1 Historical Introduction 334  
     13.2 The Sugarcane Crop in Brazil 337  
     13.3 Environmental Impact 342  
     13.4 Labour Conditions 362  
     13.5 Conclusions 363  
     References 365  
  Ethanol Production: Energy and Economic Issues Related to U.S. and Brazilian Sugarcane 369  
     14.1 Introduction 369  
     14.2 Energy Inputs in Sugarcane Production 370  
     14.3 Energy Inputs in Fermentation/Distillation 372  
     14.4 Energy Yield 374  
     14.5 Economic Costs 374  
     14.6 Land Use in the U.S. 375  
     14.7 Ethanol Production and Use in Brazil 376  
     14.8 Environmental Impacts 376  
     14.9 Air Pollution 377  
     14.10 Food Security 378  
     14.11 Food versus the Fuel Issue 378  
     14.12 Summary 379  
     References 380  
  Ethanol Production Using Corn, Switchgrass and Wood 384  
     15.1 Introduction 384  
     15.2 Energy Inputs in Corn Production 385  
     15.3 Cellulosic Ethanol 391  
     15.4 Switchgrass Production of Ethanol 393  
     15.5 Wood Cellulose Conversion into Ethanol 394  
     15.6 Biodiesel Production 397  
     15.7 Soybean Conversion into Biodiesel 397  
     15.8 Canola Conversion into Biodiesel 399  
     15.9 Conclusion 400  
     References 402  
  Developing Energy Crops for Thermal Applications: Optimizing Fuel Quality, Energy Security and GHG Mitigation 406  
     Acronyms & abbreviations 407  
     16.1 Introduction 407  
     16.2 Energy Crop Production for Energy Security and GHG Mitigation 408  
     16.3 Optimization of Energy Grasses for Combustion Applications 422  
     16.4 Outlook 429  
     References 430  
  Organic and Sustainable Agriculture and Energy Conservation 435  
     17.1 Organic Agriculture: An Overview 436  
     17.2 Organic Agriculture: An Energy-Saving Alternative? 448  
     17.3 CO2 Emissions and Organic Management 453  
     17.4 Agricultural “Waste ” for Cellulosic Ethanol Production or Back to the Field? 458  
     17.5 Organically Produced Biofuels? 461  
     17.6 Conclusion 464  
     References 466  
  Biofuel Production in Italy and Europe: Benefits and Costs, in the Light of the Present European 475  
     18.1 Introduction 476  
     18.2 To What extent Would a Large Scale Biofuel Production Really Replace Fossil Fuels? 477  
     18.3 Physical Constraints Other than Energy 487  
     18.4 The Large-Scale Picture. An Overview of Substitution Scenarios 490  
     18.5 Discussion 493  
     18.6 Conclusions 497  
     References 499  
  The Power Density of Ethanol from Brazilian Sugarcane 502  
     19.1 Introduction 502  
     19.2 Errors and the Potential for More Relating to Sugarcane 505  
     19.3 Soil Erosion Problems 506  
     References 507  
  A Brief Discussion on Algae for Oil Production: Energy Issues 508  
     References 509  
  Index 510  

Kategorien

Service

Info/Kontakt